Effects of the CYP2B6*6 allele on catalytic properties and inhibition of CYP2B6 in vitro: implication for the mechanism of reduced efavirenz metabolism and other CYP2B6 substrates in vivo.
نویسندگان
چکیده
The mechanism by which CYP2B6*6 allele alters drug metabolism in vitro and in vivo is not fully understood. To test the hypothesis that altered substrate binding and/or catalytic properties contribute to its functional consequences, efavirenz 8-hydroxylation and bupropion 4-hydroxylation were determined in CYP2B6.1 and CYP2B6.6 proteins expressed without and with cytochrome b5 (Cyt b5) and in human liver microsomes (HLMs) obtained from liver tissues genotyped for the CYP2B6*6 allele. The susceptibility of the variant protein to inhibition was also tested in HLMs. Significantly higher V(max) and K(m) values for 8-hydroxyefavirenz formation and ∼2-fold lower intrinsic clearance (Cl(int)) were noted in expressed CYP2B6.6 protein (-b5) compared with that of CYP2B6.1 protein (-b5); this effect was abolished by Cyt b5. The V(max) and Cl(int) values for 4-hydroxybupropion formation were significantly higher in CYP2B6.6 than in CYP2B6.1 protein, with no difference in K(m), whereas coexpression with Cyt b5 reversed the genetic effect on these kinetic parameters. In HLMs, CYP2B6*6/*6 genotype was associated with markedly lower V(max) (and moderate increase in K(m)) and thus lower Cl(int) values for efavirenz and bupropion metabolism, but no difference in catalytic properties was noted between CYP2B6*1/*1 and CYP2B6*1/*6 genotypes. Inhibition of efavirenz 8-hydroxylation by voriconazole was significantly greater in HLMs with the CYP2B6*6 allele (K(i) = 1.6 ± 0.8 μM) than HLMs with CYP2B6*1/*1 genotype (K(i) = 3.0 ± 1.1 μM). In conclusion, our data suggest the CYP2B6*6 allele influences metabolic activity by altering substrate binding and catalytic activity in a substrate- and Cyt b5-dependent manner. It may also confer susceptibility to inhibition.
منابع مشابه
Dmd051755 2004..2011
Efavirenz is mainly cleared by CYP2B6. The CYP2B6*6 allele is associated with lower efavirenz clearance. Efavirenz clearance was predictable using in vitro data for carriers of the CYP2B6*1/*1 genotype, but the prediction in carriers of the CYP2B6*6 allele was poor. To test the hypothesis that incorporation of mechanism of reduced efavirenz metabolism by the CYP2B6*6 allele can predict the gene...
متن کاملEfavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation.
Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydro...
متن کاملDmd051631 1264..1272
Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers usin...
متن کاملThe cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity.
We used human liver microsomes (HLMs) and recombinant cytochromes P450 (P450s) to identify the routes of efavirenz metabolism and the P450s involved. In HLMs, efavirenz undergoes primary oxidative hydroxylation to 8-hydroxyefavirenz (major) and 7-hydroxyefavirenz (minor) and secondary metabolism to 8,14-dihydroxyefavirenz. The formation of 8-hydroxyefavirenz in two HLMs showed sigmoidal kinetic...
متن کاملThe CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro.
Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2012